zephyr/lib/os/heap.c
Nicolas Pitre c227fe7b80 lib/os/heap: Correct aligned_alloc sizing for small heaps
The code that made aligned_alloc work with the 4-byte heap headers was
requesting a block of the correctly padded size, and correctly
aligning the output buffer within that memory, but it was using the
UNALIGNED chunk size for the buffer as the final size of the block
with splitting off the unused suffix.  So the final chunk in the
buffer was could be incorrectly returned to the heap and reused,
leading to overlap.

Compute the chunk size of the output buffer based on the
already-aligned output pointer instead.

Initial investigation and fix from Andy Ross <andrew.j.ross@intel.com>.
I reworked his fix, created a test case, and stolen his commit log.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2020-10-23 12:52:04 -04:00

344 lines
8.7 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/sys_heap.h>
#include <kernel.h>
#include "heap.h"
static void *chunk_mem(struct z_heap *h, chunkid_t c)
{
chunk_unit_t *buf = chunk_buf(h);
uint8_t *ret = ((uint8_t *)&buf[c]) + chunk_header_bytes(h);
CHECK(!(((size_t)ret) & (big_heap(h) ? 7 : 3)));
return ret;
}
static void free_list_remove_bidx(struct z_heap *h, chunkid_t c, int bidx)
{
struct z_heap_bucket *b = &h->buckets[bidx];
CHECK(!chunk_used(h, c));
CHECK(b->next != 0);
CHECK(h->avail_buckets & (1 << bidx));
if (next_free_chunk(h, c) == c) {
/* this is the last chunk */
h->avail_buckets &= ~(1 << bidx);
b->next = 0;
} else {
chunkid_t first = prev_free_chunk(h, c),
second = next_free_chunk(h, c);
b->next = second;
set_next_free_chunk(h, first, second);
set_prev_free_chunk(h, second, first);
}
}
static void free_list_remove(struct z_heap *h, chunkid_t c)
{
if (!solo_free_header(h, c)) {
int bidx = bucket_idx(h, chunk_size(h, c));
free_list_remove_bidx(h, c, bidx);
}
}
static void free_list_add_bidx(struct z_heap *h, chunkid_t c, int bidx)
{
struct z_heap_bucket *b = &h->buckets[bidx];
if (b->next == 0U) {
CHECK((h->avail_buckets & (1 << bidx)) == 0);
/* Empty list, first item */
h->avail_buckets |= (1 << bidx);
b->next = c;
set_prev_free_chunk(h, c, c);
set_next_free_chunk(h, c, c);
} else {
CHECK(h->avail_buckets & (1 << bidx));
/* Insert before (!) the "next" pointer */
chunkid_t second = b->next;
chunkid_t first = prev_free_chunk(h, second);
set_prev_free_chunk(h, c, first);
set_next_free_chunk(h, c, second);
set_next_free_chunk(h, first, c);
set_prev_free_chunk(h, second, c);
}
}
static void free_list_add(struct z_heap *h, chunkid_t c)
{
if (!solo_free_header(h, c)) {
int bidx = bucket_idx(h, chunk_size(h, c));
free_list_add_bidx(h, c, bidx);
}
}
/* Splits a chunk "lc" into a left chunk and a right chunk at "rc".
* Leaves both chunks marked "free"
*/
static void split_chunks(struct z_heap *h, chunkid_t lc, chunkid_t rc)
{
CHECK(rc > lc);
CHECK(rc - lc < chunk_size(h, lc));
size_t sz0 = chunk_size(h, lc);
size_t lsz = rc - lc;
size_t rsz = sz0 - lsz;
set_chunk_size(h, lc, lsz);
set_chunk_size(h, rc, rsz);
set_left_chunk_size(h, rc, lsz);
set_left_chunk_size(h, right_chunk(h, rc), rsz);
}
/* Does not modify free list */
static void merge_chunks(struct z_heap *h, chunkid_t lc, chunkid_t rc)
{
size_t newsz = chunk_size(h, lc) + chunk_size(h, rc);
set_chunk_size(h, lc, newsz);
set_left_chunk_size(h, right_chunk(h, rc), newsz);
}
static void free_chunk(struct z_heap *h, chunkid_t c)
{
/* Merge with free right chunk? */
if (!chunk_used(h, right_chunk(h, c))) {
free_list_remove(h, right_chunk(h, c));
merge_chunks(h, c, right_chunk(h, c));
}
/* Merge with free left chunk? */
if (!chunk_used(h, left_chunk(h, c))) {
free_list_remove(h, left_chunk(h, c));
merge_chunks(h, left_chunk(h, c), c);
c = left_chunk(h, c);
}
free_list_add(h, c);
}
/*
* Return the closest chunk ID corresponding to given memory pointer.
* Here "closest" is only meaningful in the context of sys_heap_aligned_alloc()
* where wanted alignment might not always correspond to a chunk header
* boundary.
*/
static chunkid_t mem_to_chunkid(struct z_heap *h, void *p)
{
uint8_t *mem = p, *base = (uint8_t *)chunk_buf(h);
return (mem - chunk_header_bytes(h) - base) / CHUNK_UNIT;
}
void sys_heap_free(struct sys_heap *heap, void *mem)
{
if (mem == NULL) {
return; /* ISO C free() semantics */
}
struct z_heap *h = heap->heap;
chunkid_t c = mem_to_chunkid(h, mem);
/*
* This should catch many double-free cases.
* This is cheap enough so let's do it all the time.
*/
__ASSERT(chunk_used(h, c),
"unexpected heap state (double-free?) for memory at %p", mem);
/*
* It is easy to catch many common memory overflow cases with
* a quick check on this and next chunk header fields that are
* immediately before and after the freed memory.
*/
__ASSERT(left_chunk(h, right_chunk(h, c)) == c,
"corrupted heap bounds (buffer overflow?) for memory at %p",
mem);
set_chunk_used(h, c, false);
free_chunk(h, c);
}
static chunkid_t alloc_chunk(struct z_heap *h, size_t sz)
{
int bi = bucket_idx(h, sz);
struct z_heap_bucket *b = &h->buckets[bi];
if (bi > bucket_idx(h, h->len)) {
return 0;
}
/* First try a bounded count of items from the minimal bucket
* size. These may not fit, trying (e.g.) three means that
* (assuming that chunk sizes are evenly distributed[1]) we
* have a 7/8 chance of finding a match, thus keeping the
* number of such blocks consumed by allocation higher than
* the number of smaller blocks created by fragmenting larger
* ones.
*
* [1] In practice, they are never evenly distributed, of
* course. But even in pathological situations we still
* maintain our constant time performance and at worst see
* fragmentation waste of the order of the block allocated
* only.
*/
if (b->next) {
chunkid_t first = b->next;
int i = CONFIG_SYS_HEAP_ALLOC_LOOPS;
do {
chunkid_t c = b->next;
if (chunk_size(h, c) >= sz) {
free_list_remove_bidx(h, c, bi);
return c;
}
b->next = next_free_chunk(h, c);
CHECK(b->next != 0);
} while (--i && b->next != first);
}
/* Otherwise pick the smallest non-empty bucket guaranteed to
* fit and use that unconditionally.
*/
size_t bmask = h->avail_buckets & ~((1 << (bi + 1)) - 1);
if ((bmask & h->avail_buckets) != 0U) {
int minbucket = __builtin_ctz(bmask & h->avail_buckets);
chunkid_t c = h->buckets[minbucket].next;
free_list_remove_bidx(h, c, minbucket);
CHECK(chunk_size(h, c) >= sz);
return c;
}
return 0;
}
void *sys_heap_alloc(struct sys_heap *heap, size_t bytes)
{
if (bytes == 0U) {
return NULL;
}
struct z_heap *h = heap->heap;
size_t chunk_sz = bytes_to_chunksz(h, bytes);
chunkid_t c = alloc_chunk(h, chunk_sz);
if (c == 0U) {
return NULL;
}
/* Split off remainder if any */
if (chunk_size(h, c) > chunk_sz) {
split_chunks(h, c, c + chunk_sz);
free_list_add(h, c + chunk_sz);
}
set_chunk_used(h, c, true);
return chunk_mem(h, c);
}
void *sys_heap_aligned_alloc(struct sys_heap *heap, size_t align, size_t bytes)
{
struct z_heap *h = heap->heap;
CHECK((align & (align - 1)) == 0);
if (align <= chunk_header_bytes(h)) {
return sys_heap_alloc(heap, bytes);
}
if (bytes == 0) {
return NULL;
}
/*
* Find a free block that is guaranteed to fit.
* We over-allocate to account for alignment and then free
* the extra allocations afterwards.
*/
size_t padded_sz = bytes_to_chunksz(h, bytes + align - 1);
chunkid_t c0 = alloc_chunk(h, padded_sz);
if (c0 == 0) {
return NULL;
}
/* Align allocated memory */
uint8_t *mem = (uint8_t *) ROUND_UP(chunk_mem(h, c0), align);
chunk_unit_t *end = (chunk_unit_t *) ROUND_UP(mem + bytes, CHUNK_UNIT);
/* Get corresponding chunks */
chunkid_t c = mem_to_chunkid(h, mem);
chunkid_t c_end = end - chunk_buf(h);
CHECK(c >= c0 && c < c_end && c_end <= c0 + padded_sz);
/* Split and free unused prefix */
if (c > c0) {
split_chunks(h, c0, c);
free_list_add(h, c0);
}
/* Split and free unused suffix */
if (right_chunk(h, c) > c_end) {
split_chunks(h, c, c_end);
free_list_add(h, c_end);
}
set_chunk_used(h, c, true);
return mem;
}
void sys_heap_init(struct sys_heap *heap, void *mem, size_t bytes)
{
/* Must fit in a 32 bit count of HUNK_UNIT */
__ASSERT(bytes / CHUNK_UNIT <= 0xffffffffU, "heap size is too big");
/* Reserve the final marker chunk's header */
__ASSERT(bytes > heap_footer_bytes(bytes), "heap size is too small");
bytes -= heap_footer_bytes(bytes);
/* Round the start up, the end down */
uintptr_t addr = ROUND_UP(mem, CHUNK_UNIT);
uintptr_t end = ROUND_DOWN((uint8_t *)mem + bytes, CHUNK_UNIT);
size_t buf_sz = (end - addr) / CHUNK_UNIT;
CHECK(end > addr);
__ASSERT(buf_sz > chunksz(sizeof(struct z_heap)), "heap size is too small");
struct z_heap *h = (struct z_heap *)addr;
heap->heap = h;
h->chunk0_hdr_area = 0;
h->len = buf_sz;
h->avail_buckets = 0;
int nb_buckets = bucket_idx(h, buf_sz) + 1;
size_t chunk0_size = chunksz(sizeof(struct z_heap) +
nb_buckets * sizeof(struct z_heap_bucket));
__ASSERT(chunk0_size + min_chunk_size(h) < buf_sz, "heap size is too small");
for (int i = 0; i < nb_buckets; i++) {
h->buckets[i].next = 0;
}
/* chunk containing our struct z_heap */
set_chunk_size(h, 0, chunk0_size);
set_chunk_used(h, 0, true);
/* chunk containing the free heap */
set_chunk_size(h, chunk0_size, buf_sz - chunk0_size);
set_left_chunk_size(h, chunk0_size, chunk0_size);
/* the end marker chunk */
set_chunk_size(h, buf_sz, 0);
set_left_chunk_size(h, buf_sz, buf_sz - chunk0_size);
set_chunk_used(h, buf_sz, true);
free_list_add(h, chunk0_size);
}