zephyr/net/bluetooth/smp.c
Johan Hedberg 9b40ec3360 Bluetooth: Introduce dedicated Bluetooth address types
We use addresses in lots of places and with LE we always need to pass
around the type in addition to the address value. Defining dedicated
types for addresses makes the code much simpler.

Change-Id: Ie8b495dce50e3f084685909c19acc5d08e2cca10
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
2016-02-05 20:14:03 -05:00

592 lines
14 KiB
C

/**
* @file smp.c
* Security Manager Protocol implementation
*/
/*
* Copyright (c) 2015 Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nanokernel.h>
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <misc/util.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include "hci_core.h"
#include "conn.h"
#include "l2cap.h"
#include "smp.h"
/* SMP channel specific context */
struct bt_smp {
/* The connection this context is associated with */
struct bt_conn *conn;
/* Pairing Request PDU */
uint8_t preq[7];
/* Pairing Response PDU */
uint8_t prsp[7];
/* Pairing Confirm PDU */
uint8_t pcnf[16];
/* Local random number */
uint8_t prnd[16];
/* Remote random number */
uint8_t rrnd[16];
/* Temporary key */
uint8_t tk[16];
/* Local key distribution */
uint8_t local_dist;
};
static struct bt_smp bt_smp_pool[CONFIG_BLUETOOTH_MAX_CONN];
#if defined(CONFIG_BLUETOOTH_DEBUG_SMP)
/* Helper for printk parameters to convert from binary to hex.
* We declare multiple buffers so the helper can be used multiple times
* in a single printk call.
*/
static const char *h(const void *buf, size_t len)
{
static const char hex[] = "0123456789abcdef";
static char hexbufs[4][129];
static uint8_t curbuf;
const uint8_t *b = buf;
char *str;
int i;
str = hexbufs[curbuf++];
curbuf %= ARRAY_SIZE(hexbufs);
len = min(len, (sizeof(hexbufs[0]) - 1) / 2);
for (i = 0; i < len; i++) {
str[i * 2] = hex[b[i] >> 4];
str[i * 2 + 1] = hex[b[i] & 0xf];
}
str[i * 2] = '\0';
return str;
}
#else
#undef BT_DBG
#define BT_DBG(fmt, ...)
#endif
typedef struct {
uint64_t a;
uint64_t b;
} uint128_t;
static void xor_128(const uint128_t *p, const uint128_t *q, uint128_t *r)
{
r->a = p->a ^ q->a;
r->b = p->b ^ q->b;
}
static int le_encrypt(const uint8_t key[16], const uint8_t plaintext[16],
uint8_t enc_data[16])
{
struct bt_hci_cp_le_encrypt *cp;
struct bt_hci_rp_le_encrypt *rp;
struct bt_buf *buf, *rsp;
int err;
BT_DBG("key %s plaintext %s\n", h(key, 16), h(plaintext, 16));
buf = bt_hci_cmd_create(BT_HCI_OP_LE_ENCRYPT, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = bt_buf_add(buf, sizeof(*cp));
memcpy(cp->key, key, sizeof(cp->key));
memcpy(cp->plaintext, plaintext, sizeof(cp->plaintext));
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ENCRYPT, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
memcpy(enc_data, rp->enc_data, sizeof(rp->enc_data));
bt_buf_put(rsp);
BT_DBG("enc_data %s\n", h(enc_data, 16));
return 0;
}
static int le_rand(void *buf, size_t len)
{
uint8_t *ptr = buf;
while (len > 0) {
struct bt_hci_rp_le_rand *rp;
struct bt_buf *rsp;
size_t copy;
int err;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_RAND, NULL, &rsp);
if (err) {
BT_ERR("HCI_LE_Random failed (%d)\n", err);
return err;
}
rp = (void *)rsp->data;
copy = min(len, sizeof(rp->rand));
memcpy(ptr, rp->rand, copy);
bt_buf_put(rsp);
len -= copy;
ptr += copy;
}
return 0;
}
static int smp_c1(const uint8_t k[16], const uint8_t r[16],
const uint8_t preq[7], const uint8_t pres[7],
const bt_addr_le_t *ia, const bt_addr_le_t *ra,
uint8_t enc_data[16])
{
uint8_t p1[16], p2[16];
int err;
BT_DBG("k %s r %s\n", h(k, 16), h(r, 16));
BT_DBG("ia %s ra %s\n", bt_addr_le_str(ia), bt_addr_le_str(ra));
BT_DBG("preq %s pres %s\n", h(preq, 7), h(pres, 7));
/* pres, preq, rat and iat are concatenated to generate p1 */
p1[0] = ia->type;
p1[1] = ra->type;
memcpy(p1 + 2, preq, 7);
memcpy(p1 + 9, pres, 7);
BT_DBG("p1 %s\n", h(p1, 16));
/* c1 = e(k, e(k, r XOR p1) XOR p2) */
/* Using enc_data as temporary output buffer */
xor_128((uint128_t *)r, (uint128_t *)p1, (uint128_t *)enc_data);
err = le_encrypt(k, enc_data, enc_data);
if (err) {
return err;
}
/* ra is concatenated with ia and padding to generate p2 */
memcpy(p2, ra->val, 6);
memcpy(p2 + 6, ia->val, 6);
memset(p2 + 12, 0, 4);
BT_DBG("p2 %s\n", h(p2, 16));
xor_128((uint128_t *)enc_data, (uint128_t *)p2, (uint128_t *)enc_data);
return le_encrypt(k, enc_data, enc_data);
}
static int smp_s1(const uint8_t k[16], const uint8_t r1[16],
const uint8_t r2[16], uint8_t out[16])
{
/* The most significant 64-bits of r1 are discarded to generate
* r1' and the most significant 64-bits of r2 are discarded to
* generate r2'.
* r1' is concatenated with r2' to generate r' which is used as
* the 128-bit input parameter plaintextData to security function e:
*
* r' = r1' || r2'
*/
memcpy(out, r2, 8);
memcpy(out + 8, r1, 8);
/* s1(k, r1 , r2) = e(k, r') */
return le_encrypt(k, out, out);
}
struct bt_buf *bt_smp_create_pdu(struct bt_conn *conn, uint8_t op, size_t len)
{
struct bt_smp_hdr *hdr;
struct bt_buf *buf;
buf = bt_l2cap_create_pdu(conn);
if (!buf) {
return NULL;
}
hdr = bt_buf_add(buf, sizeof(*hdr));
hdr->code = op;
return buf;
}
static void send_err_rsp(struct bt_conn *conn, uint8_t reason)
{
struct bt_smp_pairing_fail *rsp;
struct bt_buf *buf;
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_FAIL, sizeof(*rsp));
if (!buf) {
return;
}
rsp = bt_buf_add(buf, sizeof(*rsp));
rsp->reason = reason;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
static int smp_init(struct bt_smp *smp)
{
/* Initialize SMP context */
memset(smp, 0, sizeof(*smp));
/* Generate local random number */
if (le_rand(smp->prnd, 16)) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("prnd %s\n", h(smp->prnd, 16));
return 0;
}
static int smp_pairing_req(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing *req = (void *)buf->data;
struct bt_smp_pairing *rsp;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
uint8_t auth;
int ret;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
if ((req->max_key_size > BT_SMP_MAX_ENC_KEY_SIZE) ||
(req->max_key_size < BT_SMP_MIN_ENC_KEY_SIZE)) {
return BT_SMP_ERR_ENC_KEY_SIZE;
}
ret = smp_init(smp);
if (ret) {
return ret;
}
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RSP, sizeof(*rsp));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
/* For JustWorks pairing simplify rsp parameters.
* TODO: needs to be reworked later on
*/
auth = (req->auth_req & BT_SMP_AUTH_MASK);
auth &= ~(BT_SMP_AUTH_MITM | BT_SMP_AUTH_SC | BT_SMP_AUTH_KEYPRESS);
rsp->auth_req = auth;
rsp->io_capability = BT_SMP_IO_NO_INPUT_OUTPUT;
rsp->oob_flag = BT_SMP_OOB_NOT_PRESENT;
rsp->max_key_size = req->max_key_size;
rsp->init_key_dist = 0;
rsp->resp_key_dist = (req->resp_key_dist & BT_SMP_DIST_ENC_KEY);
smp->local_dist = rsp->resp_key_dist;
memset(smp->tk, 0, sizeof(smp->tk));
/* Store req/rsp for later use */
smp->preq[0] = BT_SMP_CMD_PAIRING_REQ;
memcpy(smp->preq + 1, req, sizeof(*req));
smp->prsp[0] = BT_SMP_CMD_PAIRING_RSP;
memcpy(smp->prsp + 1, rsp, sizeof(*rsp));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static int smp_pairing_confirm(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_confirm *req = (void *)buf->data;
struct bt_smp_pairing_confirm *rsp;
struct bt_smp *smp = conn->smp;
struct bt_buf *rsp_buf;
int err;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
memcpy(smp->pcnf, req->val, sizeof(smp->pcnf));
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_CONFIRM,
sizeof(*rsp));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
/* FIXME: Right now we assume peripheral role for ia & ra */
err = smp_c1(smp->tk, smp->prnd, smp->preq, smp->prsp, &conn->dst,
&conn->src, rsp->val);
if (err) {
bt_buf_put(rsp_buf);
return BT_SMP_ERR_UNSPECIFIED;
}
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static int smp_pairing_random(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_random *req = (void *)buf->data;
struct bt_smp_pairing_random *rsp;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
uint8_t cfm[16];
int err;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
memcpy(smp->rrnd, req->val, sizeof(smp->rrnd));
/* FIXME: Right now we assume peripheral role for ia & ra */
err = smp_c1(smp->tk, smp->rrnd, smp->preq, smp->prsp, &conn->dst,
&conn->src, cfm);
if (err) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("pcnf %s cfm %s\n", h(smp->pcnf, 16), h(cfm, 16));
if (memcmp(smp->pcnf, cfm, sizeof(smp->pcnf))) {
return BT_SMP_ERR_CONFIRM_FAILED;
}
keys = bt_keys_create(&conn->dst);
if (!keys) {
BT_ERR("Unable to create new keys\n");
return BT_SMP_ERR_UNSPECIFIED;
}
err = smp_s1(smp->tk, smp->prnd, smp->rrnd, keys->slave_ltk.val);
if (err) {
bt_keys_clear(keys);
return BT_SMP_ERR_UNSPECIFIED;
}
/* Rand and EDiv are 0 for the STK */
keys->slave_ltk.rand = 0;
keys->slave_ltk.ediv = 0;
BT_DBG("generated STK %s\n", h(keys->slave_ltk.val, 16));
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RANDOM,
sizeof(*rsp));
if (!rsp_buf) {
bt_keys_clear(keys);
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
memcpy(rsp->val, smp->prnd, sizeof(rsp->val));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static void bt_smp_recv(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_hdr *hdr = (void *)buf->data;
int err;
if (buf->len < sizeof(*hdr)) {
BT_ERR("Too small SMP PDU received\n");
goto done;
}
BT_DBG("Received SMP code 0x%02x len %u\n", hdr->code, buf->len);
bt_buf_pull(buf, sizeof(*hdr));
switch (hdr->code) {
case BT_SMP_CMD_PAIRING_REQ:
err = smp_pairing_req(conn, buf);
break;
case BT_SMP_CMD_PAIRING_CONFIRM:
err = smp_pairing_confirm(conn, buf);
break;
case BT_SMP_CMD_PAIRING_RANDOM:
err = smp_pairing_random(conn, buf);
break;
default:
BT_WARN("Unhandled SMP code 0x%02x\n", hdr->code);
err = BT_SMP_ERR_CMD_NOTSUPP;
break;
}
if (err) {
send_err_rsp(conn, err);
}
done:
bt_buf_put(buf);
}
static void bt_smp_connected(struct bt_conn *conn)
{
int i;
BT_DBG("conn %p handle %u\n", conn, conn->handle);
for (i = 0; i < ARRAY_SIZE(bt_smp_pool); i++) {
struct bt_smp *smp = &bt_smp_pool[i];
if (!smp->conn) {
smp->conn = conn;
conn->smp = smp;
return;
}
}
BT_ERR("No available SMP context for conn %p\n", conn);
}
static void bt_smp_disconnected(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
if (!smp) {
return;
}
BT_DBG("conn %p handle %u\n", conn, conn->handle);
conn->smp = NULL;
memset(smp, 0, sizeof(*smp));
}
static void bt_smp_encrypt_change(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
struct bt_buf *buf;
BT_DBG("conn %p handle %u encrypt 0x%02x\n", conn, conn->handle,
conn->encrypt);
if (!smp || !conn->encrypt) {
return;
}
keys = bt_keys_find(&conn->dst);
if (!keys) {
BT_ERR("Unable to look up keys for conn %p\n");
return;
}
if (!smp->local_dist) {
return;
}
if (smp->local_dist & BT_SMP_DIST_ENC_KEY) {
struct bt_smp_encrypt_info *info;
struct bt_smp_master_ident *ident;
le_rand(keys->slave_ltk.val, sizeof(keys->slave_ltk.val));
le_rand(&keys->slave_ltk.rand, sizeof(keys->slave_ltk.rand));
le_rand(&keys->slave_ltk.ediv, sizeof(keys->slave_ltk.ediv));
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_ENCRYPT_INFO,
sizeof(*info));
if (!buf) {
BT_ERR("Unable to allocate Encrypt Info buffer\n");
return;
}
info = bt_buf_add(buf, sizeof(*info));
memcpy(info->ltk, keys->slave_ltk.val, sizeof(info->ltk));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_MASTER_IDENT,
sizeof(*ident));
if (!buf) {
BT_ERR("Unable to allocate Master Ident buffer\n");
return;
}
ident = bt_buf_add(buf, sizeof(*ident));
ident->rand = keys->slave_ltk.rand;
ident->ediv = keys->slave_ltk.ediv;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
}
void bt_smp_init(void)
{
static struct bt_l2cap_chan chan = {
.cid = BT_L2CAP_CID_SMP,
.recv = bt_smp_recv,
.connected = bt_smp_connected,
.disconnected = bt_smp_disconnected,
.encrypt_change = bt_smp_encrypt_change,
};
bt_l2cap_chan_register(&chan);
}