mirror of
https://github.com/zephyrproject-rtos/zephyr
synced 2025-09-04 09:51:57 +00:00
Kernel timeouts have always been a 32 bit integer despite the existence of generation macros, and existing code has been inconsistent about using them. Upcoming commits are going to make the timeout arguments opaque, so fix things up to be rigorously correct. Changes include: + Adding a K_TIMEOUT_EQ() macro for code that needs to compare timeout values for equality (e.g. with K_FOREVER or K_NO_WAIT). + Adding a k_msleep() synonym for k_sleep() which can continue to take integral arguments as k_sleep() moves away to timeout arguments. + Pervasively using the K_MSEC(), K_SECONDS(), et. al. macros to generate timeout arguments. + Removing the usage of K_NO_WAIT as the final argument to K_THREAD_DEFINE(). This is just a count of milliseconds and we need to use a zero. This patch include no logic changes and should not affect generated code at all. Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
294 lines
5.4 KiB
C
294 lines
5.4 KiB
C
/*
|
|
* Copyright (c) 2018 Linaro Limited.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr.h>
|
|
#include <drivers/uart.h>
|
|
#include <sys/printk.h>
|
|
#include <console/tty.h>
|
|
|
|
static int tty_irq_input_hook(struct tty_serial *tty, u8_t c);
|
|
static int tty_putchar(struct tty_serial *tty, u8_t c);
|
|
|
|
static void tty_uart_isr(void *user_data)
|
|
{
|
|
struct tty_serial *tty = user_data;
|
|
struct device *dev = tty->uart_dev;
|
|
|
|
uart_irq_update(dev);
|
|
|
|
if (uart_irq_rx_ready(dev)) {
|
|
u8_t c;
|
|
|
|
while (1) {
|
|
if (uart_fifo_read(dev, &c, 1) == 0) {
|
|
break;
|
|
}
|
|
tty_irq_input_hook(tty, c);
|
|
}
|
|
}
|
|
|
|
if (uart_irq_tx_ready(dev)) {
|
|
if (tty->tx_get == tty->tx_put) {
|
|
/* Output buffer empty, don't bother
|
|
* us with tx interrupts
|
|
*/
|
|
uart_irq_tx_disable(dev);
|
|
} else {
|
|
uart_fifo_fill(dev, &tty->tx_ringbuf[tty->tx_get++], 1);
|
|
if (tty->tx_get >= tty->tx_ringbuf_sz) {
|
|
tty->tx_get = 0U;
|
|
}
|
|
k_sem_give(&tty->tx_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int tty_irq_input_hook(struct tty_serial *tty, u8_t c)
|
|
{
|
|
int rx_next = tty->rx_put + 1;
|
|
|
|
if (rx_next >= tty->rx_ringbuf_sz) {
|
|
rx_next = 0;
|
|
}
|
|
|
|
if (rx_next == tty->rx_get) {
|
|
/* Try to give a clue to user that some input was lost */
|
|
tty_putchar(tty, '~');
|
|
return 1;
|
|
}
|
|
|
|
tty->rx_ringbuf[tty->rx_put] = c;
|
|
tty->rx_put = rx_next;
|
|
k_sem_give(&tty->rx_sem);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tty_putchar(struct tty_serial *tty, u8_t c)
|
|
{
|
|
unsigned int key;
|
|
int tx_next;
|
|
int res;
|
|
|
|
res = k_sem_take(&tty->tx_sem, tty->tx_timeout);
|
|
if (res < 0) {
|
|
return res;
|
|
}
|
|
|
|
key = irq_lock();
|
|
tx_next = tty->tx_put + 1;
|
|
if (tx_next >= tty->tx_ringbuf_sz) {
|
|
tx_next = 0;
|
|
}
|
|
if (tx_next == tty->tx_get) {
|
|
irq_unlock(key);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
tty->tx_ringbuf[tty->tx_put] = c;
|
|
tty->tx_put = tx_next;
|
|
|
|
irq_unlock(key);
|
|
uart_irq_tx_enable(tty->uart_dev);
|
|
return 0;
|
|
}
|
|
|
|
ssize_t tty_write(struct tty_serial *tty, const void *buf, size_t size)
|
|
{
|
|
const u8_t *p = buf;
|
|
size_t out_size = 0;
|
|
int res = 0;
|
|
|
|
if (tty->tx_ringbuf_sz == 0U) {
|
|
/* Unbuffered operation, implicitly blocking. */
|
|
out_size = size;
|
|
|
|
while (size--) {
|
|
uart_poll_out(tty->uart_dev, *p++);
|
|
}
|
|
|
|
return out_size;
|
|
}
|
|
|
|
while (size--) {
|
|
res = tty_putchar(tty, *p++);
|
|
if (res < 0) {
|
|
/* If we didn't transmit anything, return the error. */
|
|
if (out_size == 0) {
|
|
errno = -res;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, return how much we transmitted. If error
|
|
* was transient (like EAGAIN), on next call user might
|
|
* not even get it. And if it's non-transient, they'll
|
|
* get it on the next call.
|
|
*/
|
|
return out_size;
|
|
}
|
|
|
|
out_size++;
|
|
}
|
|
|
|
return out_size;
|
|
}
|
|
|
|
static int tty_getchar(struct tty_serial *tty)
|
|
{
|
|
unsigned int key;
|
|
u8_t c;
|
|
int res;
|
|
|
|
res = k_sem_take(&tty->rx_sem, tty->rx_timeout);
|
|
if (res < 0) {
|
|
return res;
|
|
}
|
|
|
|
key = irq_lock();
|
|
c = tty->rx_ringbuf[tty->rx_get++];
|
|
if (tty->rx_get >= tty->rx_ringbuf_sz) {
|
|
tty->rx_get = 0U;
|
|
}
|
|
irq_unlock(key);
|
|
|
|
return c;
|
|
}
|
|
|
|
static ssize_t tty_read_unbuf(struct tty_serial *tty, void *buf, size_t size)
|
|
{
|
|
u8_t *p = buf;
|
|
size_t out_size = 0;
|
|
int res = 0;
|
|
u32_t timeout = tty->rx_timeout;
|
|
|
|
while (size) {
|
|
u8_t c;
|
|
res = uart_poll_in(tty->uart_dev, &c);
|
|
if (res <= -2) {
|
|
/* Error occurred, best we can do is to return
|
|
* accumulated data w/o error, or return error
|
|
* directly if none.
|
|
*/
|
|
if (out_size == 0) {
|
|
errno = res;
|
|
return -1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (res == 0) {
|
|
*p++ = c;
|
|
out_size++;
|
|
size--;
|
|
}
|
|
|
|
if (size == 0 ||
|
|
(!K_TIMEOUT_EQ(timeout, K_FOREVER) && timeout-- == 0U)) {
|
|
break;
|
|
}
|
|
|
|
/* Avoid 100% busy-polling, and yet try to process bursts
|
|
* of data without extra delays.
|
|
*/
|
|
if (res == -1) {
|
|
k_sleep(K_MSEC(1));
|
|
}
|
|
}
|
|
|
|
return out_size;
|
|
}
|
|
|
|
ssize_t tty_read(struct tty_serial *tty, void *buf, size_t size)
|
|
{
|
|
u8_t *p = buf;
|
|
size_t out_size = 0;
|
|
int res = 0;
|
|
|
|
if (tty->rx_ringbuf_sz == 0U) {
|
|
return tty_read_unbuf(tty, buf, size);
|
|
}
|
|
|
|
while (size--) {
|
|
res = tty_getchar(tty);
|
|
if (res < 0) {
|
|
/* If we didn't transmit anything, return the error. */
|
|
if (out_size == 0) {
|
|
errno = -res;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, return how much we transmitted. If error
|
|
* was transient (like EAGAIN), on next call user might
|
|
* not even get it. And if it's non-transient, they'll
|
|
* get it on the next call.
|
|
*/
|
|
return out_size;
|
|
}
|
|
|
|
*p++ = (u8_t)res;
|
|
out_size++;
|
|
}
|
|
|
|
return out_size;
|
|
}
|
|
|
|
int tty_init(struct tty_serial *tty, struct device *uart_dev)
|
|
{
|
|
if (!uart_dev) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
tty->uart_dev = uart_dev;
|
|
|
|
/* We start in unbuffer mode. */
|
|
tty->rx_ringbuf = NULL;
|
|
tty->rx_ringbuf_sz = 0U;
|
|
tty->tx_ringbuf = NULL;
|
|
tty->tx_ringbuf_sz = 0U;
|
|
|
|
tty->rx_get = tty->rx_put = tty->tx_get = tty->tx_put = 0U;
|
|
|
|
tty->rx_timeout = K_FOREVER;
|
|
tty->tx_timeout = K_FOREVER;
|
|
|
|
uart_irq_callback_user_data_set(uart_dev, tty_uart_isr, tty);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tty_set_rx_buf(struct tty_serial *tty, void *buf, size_t size)
|
|
{
|
|
uart_irq_rx_disable(tty->uart_dev);
|
|
|
|
tty->rx_ringbuf = buf;
|
|
tty->rx_ringbuf_sz = size;
|
|
|
|
if (size > 0) {
|
|
k_sem_init(&tty->rx_sem, 0, UINT_MAX);
|
|
uart_irq_rx_enable(tty->uart_dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tty_set_tx_buf(struct tty_serial *tty, void *buf, size_t size)
|
|
{
|
|
uart_irq_tx_disable(tty->uart_dev);
|
|
|
|
tty->tx_ringbuf = buf;
|
|
tty->tx_ringbuf_sz = size;
|
|
|
|
k_sem_init(&tty->tx_sem, size - 1, UINT_MAX);
|
|
|
|
/* New buffer is initially empty, no need to re-enable interrupts,
|
|
* it will be done when needed (on first output char).
|
|
*/
|
|
|
|
return 0;
|
|
}
|